
High−Performance Computation of Radar Cross Sections:
Parallelization of MATLAB Code1

D. R. Prabhu
The Ohio State University

PMB 193, 939-I Beards Hill Road
Aberdeen, MD 21001

E-mail: prabhu@arl.mil

T. Raju Damarla
Army Research Laboratory

2800 Powder Mill Road
Adelphi, MD 20783

E-mail: rdamarla@arl.mil

Abstract

A MATLAB code has been developed for computing scattered electromagnetic fields
from, e.g., unexploded ordnance (UXOs), mines, and tanks. This code takes into account
the lossy nature and frequency dependence of various soils based on a physical optics
(PO) model. However, the simulation of scattered fields is computationally intensive: the
number of computations is given by ptf NNNNN ×××× φθ , where fN denotes the

number of frequencies, θN the number of elevation angles, φN the number of azimuth

angles, tN the number of triangles in a patch model, and pN the number of
polarizations. Typically, in order to generate a synthetic aperture radar (SAR) image of a
UXO at a given elevation angle, we need to compute the scattered fields at all frequencies
for all azimuth angles ranging from °0 to °360 , and the number of triangles in a patch
model typically ranges from 3,000 to 10,000 for a UXO, depending on the fidelity of the
model, which in turn depends on the highest frequency. Thus, for this example, the
number of required computations is approximately 1010. Furthermore, for large, complex
objects such as tanks or trailers, the number of computations increases dramatically as

tN increases. Therefore, in order to generate the desired scattered fields in a reasonable
time, it becomes highly desirable to parallelize the code.

The original serial code produced to solve this problem was written in MATLAB (m-
file), and executed in approximately 3 hours on a SUN Ultra SPARC workstation. The
MATLAB compiler was subsequently employed to convert the m-file to serial C code.
The resulting serial C code was converted to parallel code by hand-insertion of calls to
the Message Passing Interface (MPI) library. The computational workload in the loop
that steps through the azimuth angles was distributed to multiple processors, resulting in
coarse-grain parallelization. The parallel code produced identical outputs in only 9
minutes using eight processors of a SUN Enterprise 10000 machine at the U.S. Army

1 This work was supported in part by the Programming Environment and Training (PET) program of the
DoD High-Performance Computing Modernization Office.

Research Laboratory (ARL) Major Shared Resource Center (MSRC). The observed
scalability of the code was close to linear.

Introduction

The Department of Defense (DoD) has a mission requirement to develop various
techniques for the detection of unexploded ordnance (UXO) at various sites in the United
States in order to identify UXO contamination and to facilitate remediation. Towards this
end, the Army Research Laboratory (ARL) has been actively pursuing the use of an
airborne ground−penetrating (GPEN) ultra−wideband (UWB) radar. ARL has built a
UWB GPEN radar that is mounted on a telescopic boom that extends up to 50 m in order
to simulate airborne radar. This UWB GPEN radar, which has a bandwidth of
approximately 1.2 GHz (20-1200 MHz), is used to collect data from various test sites
such as Yuma Proving Ground in Arizona and Eglin Air Force Base in Florida. In order
to detect UXOs using physics-based phenomenology, a physical optics (PO) model [1−3]
has been developed for computing scattered electromagnetic fields from various UXOs.
This model takes into account the lossy nature and frequency dependence of various
soils, which should allow for more accurate modeling of UXOs in a variety of realistic
field conditions. The computation of the scattered fields requires the development of
high−fidelity models (triangular patch models) of UXOs, and the simulation of the
scattered fields using a PO simulator for various azimuth angles, elevation angles, and
different frequencies (20-2000 MHz). Figures 1a and 1b show the triangular patch model
of a 155−mm artillery shell (UXO155) and the resulting scattered fields. Time−domain
pulses reflected from a UXO are obtained by computing the inverse Fourier transform of
the product of the simulated fields and the spectrum of the transmitted radar pulse. These
time−domain pulses are subsequently used to generate SAR images.

Figure 1b: RCS characteristics of UXO155Figure 1a: High−fidelity patch model of UXO155

For each elevation and azimuth angle, the PO simulator computes currents induced by an
incident radar-transmitted plane wave on each triangular patch of the UXO. These
currents are computed for all frequencies in the radar bandwidth, and for all four
polarizations of the incident and scattered waves, namely, VV, VH, HV, and HH, where
V denotes vertical polarization and H denotes horizontal polarization. As a result, the
simulation of the composite scattered fields is computationally expensive: the number of
computations is given by ptf NNNNN ×××× φθ , where fN denotes the number of

frequencies, θN the number of elevation angles, φN the number of azimuth angles, tN

the number of triangles in a patch model, and pN the number of polarizations. For the
generation of SAR images of a UXO, one needs to compute electromagnetic scattering
fields at azimuth angles ranging from °0 to °360 for each elevation angle. The
computation of tN , the number of patches in a high−fidelity model, depends on the size
of the UXO, and the highest frequency at which the scattered fields are computed.
Typically, the side of a triangle in a patch model is roughly λ1.0 , where λ denotes the
wavelength. Consequently, tN typically ranges from 3000 to 10000 for a UXO, and tN is
an order or two larger for tanks, trailers, etc. As can be seen from this straightforward
analysis, in order to generate the electromagnetic scattering fields in a reasonable time, it
becomes highly desirable to parallelize the code.

The PO simulator code was developed in MATLAB [4], which has been identified as one
of the key higher level programming languages for algorithm development in
signal/image processing. Core MATLAB, along with numerous toolboxes for specialized
applications, provides a rich collection of functions and visualization tools for rapid code
development and prototyping. Unfortunately, MATLAB is inherently serial, and while
parts of MATLAB that are linked to vendor provided libraries may execute in multi-
threaded mode, overall, the result is only a marginal parallelization of user−developed
code.

This paper presents details of parallelization of the PO simulator code. The MATLAB
compiler was employed to convert the MATLAB code to serial C code. The resulting
serial code was subsequently parallelized through the hand-insertion of calls to the MPI
library. Studies performed on the resulting parallel code showed close to linear
scalability.

Serial MATLAB Code

The flowchart in Figure 2 shows the structure of the MATLAB code for the PO
simulator. Calculating the electromagnetic fields consists of computing the following
field equation [1,3] for vertical polarization:

() ()dseJJJ
r

ej
E zyxj

s
zyx

rj
θφθφθβ

β

θ θφθφθ
π

ωµ cossinsincossinsinsincoscoscos
4

′+′+′−
−

∫∫ −+−= ,

where r denotes the radial distance from the radar to the target, ω denotes the radial
frequency, µ denotes the permeability, µεωβ = , ε denotes the permittivity, vector

()zyx JJJJ ,,= denotes the current in a patch,),,(zyxr ′′′=′ denotes the vector from the
origin to the centroid of a triangle patch, θ denotes the elevation angle, and φ denotes
the azimuth angle. A similar equation is used to compute the horizontal polarization. The
code, which is well written in MATLAB with vectorization to rapidly compute the
currents on all triangular patches, executes in about 3 hours on a SUN UltraSPARC
workstation equipped with a 300−MHz CPU and 256 MB of main memory. The
execution time was reduced to 2 hours when the code was ported to a SUN E10K at the
ARL MSRC and executed under MATLAB.

Read triangle patch
info

Read angle &
frequency info

All
elevation angles

done?

All
azimuth angles

done?

All
frequencies

done?

Increment elevation
angle

Increment azimuth
angle

Increment frequency

Stop
yes

Store the
results

yes

yes

Compute scattering
fields for all patches

no

no

no

Figure 2: Structure of MATLAB serial code

Parallelization of MATLAB Code

The serial MATLAB code in m-file form was converted to a parallel, standalone MPI-
based executable. A schematic of the methodology employed is presented in Figure 3.

The conversion involved the following steps:

Conversion of MATLAB code (m-file) to serial C code: The MATLAB compiler (version
2) was employed to convert the m-file into serial C code. This conversion was achieved
in a straightforward manner by invoking the MATLAB compiler (mcc) inside MATLAB.
The MATLAB compiler converts each variable in MATLAB to an mxArray structure in
C, which contains the following information: pointers to the values of the real and
imaginary parts, array size of the variable (all variables in MATLAB are arrays), the
name of the variable in the MATLAB workspace, etc. Mathematical operations and
assignments in MATLAB are converted to procedure calls in C. For example, the
statement “a = b+c” in MATLAB is transformed to “mlfAssign (&a, mlfPlus(b, c))” in
the resulting C code, where a, b, and c are mxArray structures.

At this point, we note that it is critical to obtain good serial performance before any
parallelization work is undertaken. For example, the highest level of optimization should
be used that results in the best performance and yields correct results. In addition,
compiler flags that fully exploit the processor architecture and available caches on the
compute platform should be used. Additionally, linking to a fast math library can often
yield a significant speed-up, but the precision of the results could be affected.

MATLAB m-file

Serial C code

Parallel C code

Standalone parallel executable

Figure 3: Conversion of serial MATLAB code to a
standalone executable

Use MATLAB compiler

Hand-insert MPI
calls

Compile and link with
MPI and MATLAB

libraries

Accordingly, the resulting C code was optimized for serial performance. The accuracy
and the precision of the results of the standalone executable were verified by comparison
to the original MATLAB code results. Identical outputs were obtained with an execution
time of about 1 hour, yielding a speed-up factor of 2 without any parallelization.

Parallelization of serial C code: The original code requires the following input
information: a) angles and their ranges for a specific simulation run, b) material
properties, c) coordinates of patches defining the test object, and d) connectivity
information to define the test object geometry. The required information is organized in
three input files. The MATLAB-generated C code uses special functions to read input
values and to assign them to mxArray type variables.

All computing processes need to be able to access all input data during execution. The
root process typically reads data files and broadcasts needed information to other
processes. However, this approach has disadvantages for MATLAB−generated C code.
MPI-based sends and receives of mxArray structures involve the extensive use of user-
defined data types, which requires writing a significant amount of additional code. It is
also inefficient to extract individual object values from the mxArray structures for
broadcast to all processes during parallel execution. Moreover, each process in turn needs
to receive individual values and reencapsulate them into mxArray structures.
Consequently, we decided not to use MPI-based communication for broadcasting the
input data. Instead, the three input data files were replicated to provide each process with
its own set of data files, resulting in simpler code that was easier to debug and maintain.
This technique works for typical input files, which are about 100 kilobytes in size. This
approach would need to be reevaluated if disk space is constrained and/or if test objects
have complex geometries, resulting in huge data files.

The loop that steps through the azimuth angle, which is shown in Figure 2, was
parallelized using MPI. Calls to MPI functions were hand-inserted into the serial C code,
resulting in coarse-grain parallelization. Since each iteration of the azimuth angle loop
was independent, the computational load of the loop was distributed across multiple
processes in a straightforward manner. This process can be described by the following
series of steps.

- N parallel processes are created on N processors
- The root process (process with rank 0) creates N replicas of each input file, and

assigns a unique name to each copy; numbers 0 through 1−N are appended to the
original name of each input file.

- Each process reads its corresponding set of input files
- The root process deletes all replicas of input files
- The root process computes the work load distribution, and assigns each process a

share of work. For this application, each process is assigned start and end values for
the azimuth angle loop variable.

- Each process computes its assigned part of the loop and writes output files to disk.

Compilation and linking of parallel C code: The modified C code with MPI calls was
compiled and linked with the MPI library (libmpi), and executed on multiple processors.
The following MATLAB-related libraries were also linked in for standalone execution:
libmmfile, libmcc, libmatlb, libmat, and libmx.

Results
The execution time of the original code was approximately 3 hours on a SUN Ultra
SPARC workstation. As previously mentioned, the execution time reduced to 2 hours
when the code was ported to a SUN E10K at the ARL MSRC and executed under
MATLAB. In standalone mode, the serial optimized code produced identical outputs in
about 1 hour. In contrast, the standalone parallel code produced identical outputs in 9
minutes using 8 processors. A plot of the execution time of the parallel code vs. number

of processors is presented in Figure 4. A plot of the resulting speed-up vs. number of
processors is shown in Figure 5. Both plots are based on results obtained on a
nondedicated 64−processor SUN E10K HPC with UltraSPARC II 400−MHz CPUs and
64 GB of main memory. A linear reference line and the ideal speed-up curve are
superimposed on the speed-up plot in Figure 5.

Execution Time of Parallel Code

0

10

20

30

40

50

60

70

0 10 20 30 40

Number of processors

E
xe

cu
ti

o
n

 T
im

e
(m

in
u

te
s)

Execution Time of
Parallel Code

Figure 4: Execution time of parallel radar cross-section computation code. Plot shows execution
time (wall clock time, minutes) vs. number of processors

The ideal speed-up curve is computed with the following “ideal” assumptions: a) zero
process startup times, b) infinite communication and file I/O bandwidths, and c) equal
computation times for each iteration of the azimuth angle loop. Note that the staircase
appearance of the ideal curve is due to the coarse-grain parallelization of a finite number
of loop iterations. When the total number of iterations (180 for this problem) is a multiple
of the number of processors, each processor is assigned an equal number of iterations in
the workload distribution. The resulting speed-up, under assumed ideal conditions, is
linear. However, when the total number of iterations is not a multiple, the distribution of
workload is unequal. Processors that have larger computational loads determine the time
to completion, resulting in sublinear ideal speed-up.

In reality, process startup times, limited communication bandwidth, and file I/O overhead
can have significant effects on execution times, depending on the architecture. Figure 5
clearly shows such effects, when the number of processors is increased from 30 to 32. As
seen from the ideal speed-up curve, there is no computational benefit associated with the
increase. The observed speed-up drops, instead of remaining constant.

The resulting speed-up is slightly below the ideal speed-up curve for the given problem
size, using up to 36 processors. Increasing the number of processors beyond 36 is not
recommended for this problem size.

Speed-up of Parallel Code

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

Number of processors

S
p

ee
d

-u
p Ideal Speed-up

Linear Reference

Actual Speed-up

Figure 5: Speed-up of parallel radar cross-section computation code. Plot shows speed-up vs.
number of processors

Summary and Conclusions

The improved, parallelized code has had a significant impact on ground−penetrating
ultra−wideband radar system simulations at the Army Research Laboratory. The parallel
code enables rapid computation of a) radar cross-sections at higher angular resolutions, b)
radar cross-sections of objects with complex geometries, and c) more intensive additional
computations within the loop.

There are other ways of parallelizing serial MATLAB code. Integrated Sensors, Inc.
(ISI), has developed a software package called RTExpress [5] that converts code written
in MATLAB to C code, compiles with MPI libraries, and supports execution on multiple
processors with minimal input from the user. Parallelization is achieved by replacing
MATLAB functions with MPI-based parallel versions. Over 90% of core MATLAB
functions are supported. RTExpress has been installed on the SUN E10Ks at the ARL
MSRC, and will be used to parallelize the radar cross-section code. Another alternative is
to use NetSolve [6], developed at the University of Tennessee, which enables users to
access network distributed computational resources. Using the MATLAB interface to
NetSolve, application programs are executed on a UNIX workstation or a PC, but
computationally intensive parts of the code are executed (in serial or parallel) on remote
HPC NetSolve servers. The use of OpenMP directives is also slated for investigation on
the SUN E10K and other shared memory machines such as SGI O2Ks.

Acknowledgments

This work was supported in part by the Programming Environment and Training (PET)
program of the DoD High Performance Computing Modernization Office. The authors
wish to thank Prof. Stan Ahalt for insightful discussions.

References

1. T. Damarla, “A Fast Algorithm for Computing Scattered Fields using Physical Optics
Equivalent Approximation in Half Space,” Technical Report, Army Research
Laboratory, Adelphi, MD.

2. Anders Sullivan, Raju Damarla, Norbert Geng, Yanting Dong, and Lawrence Carin,
“Electromagnetic Modeling of Surface and Buried Unexploded Ordnance (UXO),” in
the Proc. of ARL-FEDLAB Symposium, 21-23 March 2000, College Park, MD.

3. C. A. Balanis, “Advanced Engineering Electromagnetics,” published by John Wiley
& Sons, 1989.

4. MATLAB, http://www.mathworks.com
5. RTExpress, http://www.rtexpress.com
6. Henri Casanova and Jack Dongarra, “NetSolve: A Network Server for Solving

Computational Science Problems,” Technical Report No. CS-95-313, University of
Tennessee, November 1995.

